Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-35356250

ABSTRACT

The rapid emergence and spread of antimicrobial resistance has become a global public health concern that threatens the effective treatment of infectious diseases. One major approach adopted to overcome antimicrobial resistance is the use of plant extracts individually and/or with combination of antibiotics with plant extracts, which may lead to new ways of treating infectious diseases and essentially representing a potential area for further future investigations. In this study, the antifungal activities of Azadirachta indica leaf and Catharanthus roseus flower extracts against fluconazole-resistant Candida albicans strains (isolated from pregnant women with vulvovaginal candidiasis) and anti-methicillin-resistant Staphylococcus aureus (MRSA) were evaluated by agar well diffusion, microdilution, and biofilm inhibition assays. Subsequently, the determination of the combined antimicrobial activity of the individual plant extracts with (fluconazole and voriconazole) and (ampicillin, tetracycline, and streptomycin) against C. albicans strains and MRSA, respectively, was evaluated by checkerboard microdilution assay. Results from the study showed that the antimicrobial activity of the two plant extracts determined by time-kill kinetics was fungistatic with their MICs ranging from 0.1 to 4 mg/mL. Interestingly, all extracts were proved as good biofilm inhibitors of resistant C. albicans and MRSA from 10.1 to 98.82%. Their combination interaction with fluconazole, voriconazole, ampicillin, tetracycline, and streptomycin ranged from synergy to antagonism as per the parameters used. Overall, these results showed that A. indica leaf and C. roseus flower extracts have significant antifungal property. Furthermore, A. indica leaf and C. roseus flower extracts alone or in combination with fluconazole and voriconazole could provide a promising approach to the management of candidiasis caused by drug-resistant strains as well as their interaction with the antibacterial agents to combat the common infections caused by MRSA.

2.
PLoS One ; 16(12): e0260956, 2021.
Article in English | MEDLINE | ID: mdl-34962953

ABSTRACT

Vulvovaginal candidiasis (VVC) is the second most common vaginal infection that affects women of reproductive age. Its increased occurrence and associated treatment cost coupled to the rise in resistance of the causative pathogen to current antifungal therapies has necessitated the need for the discovery and development of novel effective antifungal agents for the treatment of the disease. We report in this study the anti-Candida albicans activity of Solanum torvum 70% ethanol fruit extract (STF), fractions and some isolated compounds against four (4) fluconazole-resistant strains of C. albicans. We further report on the effect of the isolated compounds on the antifungal activity of fluconazole and voriconazole in the resistant isolates as well as their inhibitory effect on C. albicans biofilm formation. STF was fractionated using n-hexane, chloroform (CHCl3) and ethyl acetate (EtOAc) to obtain four respective major fractions, which were then evaluated for anti-C. albicans activity using the microbroth dilution method. The whole extract and fractions recorded MICs that ranged from 0.25 to 16.00 mg/mL. From the most active fraction, STF- CHCl3 (MIC = 0.25-1.00 mg/mL), four (4) known compounds were isolated as Betulinic acid, 3-oxo-friedelan-20α-oic acid, Sitosterol-3-ß-D-glucopyranoside and Oleanolic acid. The compounds demonstrated considerably higher antifungal activity (0.016 to 0.512 mg/mL) than the extract and fractions and caused a concentration-dependent anti-biofilm formation activity. They also increased the sensitivity of the C. albicans isolates to fluconazole. This is the first report of 3-oxo-friedelan-20α-oic acid in the plant as well as the first report of betulinic acid, sitosterol-3-ß-D-glucopyranoside and oleanolic acid from the fruits of S. torvum. The present study has demonstrated the anti-C. albicans activity of the constituents of S. torvum ethanol fruit extract and also shown that the constituents possess anti-biofilm formation and resistance modulatory activities against fluconazole-resistant clinical C. albicans isolates.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/growth & development , Candida albicans/physiology , Drug Resistance, Fungal , Fluconazole/pharmacology , Fruit/chemistry , Solanum/chemistry , Triterpenes/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Biofilms/drug effects , Candida albicans/drug effects , Drug Resistance, Fungal/drug effects , Microbial Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification
3.
BMC Pregnancy Childbirth ; 20(1): 266, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375724

ABSTRACT

BACKGROUND: Candida is the leading cause of vaginitis, and 75% of women have at least one episode of infection in their lives, with pregnancy being a predisposing factor. If left untreated, vulvovaginal candidiasis (VVC) can lead to chorioamnionitis with subsequent abortion, prematurity and congenital infection of the neonate. We aimed to determine the prevalence of VVC, identify the recent and most frequently occurring species of Candida in pregnant women, and determine the most effective antifungal drug of choice for treatment. METHOD: A prospective cross-sectional study in which 176 high vaginal swab samples of consented pregnant women visiting the antenatal clinic from February 2018 to April 2018 were subjected to direct gram smear and culture for Candida isolation. Candida isolates were identified using a germ tube test and HiCrome Candida differential agar. Candida isolates were then subjected to a disk diffusion method using fluconazole (25 µg), nystatin (100 units), and voriconazole (1 µg) on Mueller-Hinton agar supplemented with 2% (w/v) glucose and 0.5 µg/ml methylene blue dye to determine the susceptibility pattern as per the guidelines of the Clinical Laboratory Standard Institute (CLSI). Chi-square analysis was used to ascertain the significant association of participants' sociodemographics and clinical presentations to VVC. A univariate logistic regression model was used to identify potential risk factors of VVC. RESULTS: The prevalence of VVC among our study participants was 30.7%. Non-albicans Candida (NAC) and Candida albicans had a prevalence of 74.1 and 25.9%, respectively. Candida glabrata was the most common species, followed by Candida albicans, Candida krusei, and Candida parapsilosis. 50.0, 18.5 and 3.7% of Candida species were susceptible to voriconazole, fluconazole and nystatin, respectively, whereas 37.0, 48.1 and 9.3% of Candida species were resistant to voriconazole, fluconazole and nystatin, respectively. The majority of isolates were susceptible dose dependent to all three antifungal agents, with voriconazole being the most efficacious antifungal agent. There was no significant association between participants' socio-demographic information and clinical presentations to VVC. CONCLUSION: The prevalence of VVC was high in the study area. C. glabrata was found to be the most common cause of VVC among the pregnant women attending antenatal clinics, in the Ho Municipality region of Ghana. The majority of the Candida isolates were susceptible and resistant to voriconazole and fluconazole, respectively.


Subject(s)
Candidiasis, Vulvovaginal/epidemiology , Pregnancy Complications/epidemiology , Adolescent , Adult , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida/classification , Candida/drug effects , Candida/isolation & purification , Candida albicans/drug effects , Candida albicans/isolation & purification , Candida glabrata/drug effects , Candida glabrata/isolation & purification , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Cross-Sectional Studies , Female , Fluconazole/pharmacology , Fluconazole/therapeutic use , Ghana/epidemiology , Humans , Microbial Sensitivity Tests , Pichia/drug effects , Pichia/isolation & purification , Pregnancy , Pregnancy Complications/microbiology , Pregnant Women , Prevalence , Prospective Studies , Vaginal Smears , Voriconazole/pharmacology , Voriconazole/therapeutic use , Young Adult
4.
Infect Drug Resist ; 10: 425-436, 2017.
Article in English | MEDLINE | ID: mdl-29158685

ABSTRACT

BACKGROUND AND AIMS: Aspergillus terreus Thom is a pathogen of public health and agricultural importance for its seamless abilities to expand its ecological niche. The aim of this study was holistically to investigate A. terreus morphological and immunoadaptations and their implication in antifungal resistance and proliferation during infection. MATERIALS AND METHODS: In-depth unstructured mining of relevant peer-reviewed literature was performed for A. terreus morphological, immune, resistance, and genetic diversity based on the sequenced calmodulin-like gene. RESULTS: Accessory conidia and phialidic conidia produced by A. terreus confer discrete anti-fungal resistance that ensures survivability during therapies. Interestingly, by producing unique metabolites such as Asp-melanin and terretonin, A. terreus is capable of hijacking macrophages and scavenging iron, respectively. As such, A. terreus has established a rare mechanism to mitigate phagocytosis and swing the interaction dynamics in favor of its proliferation and survival in hosts. CONCLUSION: It is further unraveled that besides A. terreus genetic diversity, morphological, biochemical, and immunologic adaptations associated with conidia germination and discharge of chemical signals during infection enable masking of the host defense as an integral part of its strategy to survive and rapidly colonize hosts.

5.
Expert Rev Anti Infect Ther ; 14(3): 345-52, 2016.
Article in English | MEDLINE | ID: mdl-26822688

ABSTRACT

Disequilibrium in the human debilitated immune system favors proliferation of invasive Candida species, a major therapeutic challenge due to development of resistance to several conventional antifungal agents (CAA) worldwide. Multiple mutations observed at specific loci that are targets for CAA are recognized as sources of drug resistance. This has prompted a shift from CAA, to diverse combination therapies, photodynamic and short peptide therapies capable of triggering specific apoptotic reactions within candidal cells. In this review, new designs and combination of short peptide (SP) with CAA as well as current application of photodynamic inactivation (PDI) against Candida species geared at generating reactive species of oxygen (ROS) and nitrogen (RNS) are discussed. It is observed that oxidative and nitrosative stresses provides a superior broad candidacidal effects for eradication of drug-resistant Candida species. The mechanism and limitations in these strategic approaches over CAA is also discussed.


Subject(s)
Candidiasis/therapy , Drug Resistance, Fungal , Photochemotherapy , Antifungal Agents/therapeutic use , Candida , Humans , Peptides/therapeutic use , Photochemotherapy/trends
6.
Gene ; 574(2): 255-64, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26260016

ABSTRACT

Bamboo species are the fastest-growing plants having a long vegetative cycle. Abrupt switching from the vegetative phase to the reproductive phase via sporadic flowering boom, occasionally leads to death of bamboo clumps, and threatens the existence of many bamboo species. To apprehend the molecular mechanism driving sporadic flowering, proteome changes in the initial and advanced floral buds of two edible bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) was dissected by two-dimensional gel electrophoresis (2-DE). A total of 39 differentially expressed peptide spots were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). In both B. vulgaris and D. manipureanus, identified proteins were categorized as transposon-related, defence and stress-related, cell cycle related, metabolism related, signal transduction related, and some lacked known putative domains. Proteins such as SEPALLATA3, ubiquitin, histone 3, thaumatin-like protein, putative tethering factor, SF-assemblin, polyubiquitin, mitochondrial carrier-like protein and RPT2-like protein were significantly expressed. Differences in D. manipureanus and B. vulgaris suggested that bamboo species have diverse 'drivers' or 'passengers' genes that govern natural sporadic flowering boom. This first floral proteomics analysis of bamboos revealed that sporadic boom is a highly energetic process, associated with stress elements, mobile genetic elements and signal transduction cross-talk elements.


Subject(s)
Bambusa/metabolism , Flowers/metabolism , Interspersed Repetitive Sequences/physiology , Plant Proteins/genetics , Proteome/analysis , Stress, Physiological/physiology , Bambusa/genetics , Bambusa/growth & development , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins/analysis , Plant Proteins/metabolism , Proteome/genetics , Proteomics , Stress, Physiological/genetics
8.
Biomed Res Int ; 2014: 378372, 2014.
Article in English | MEDLINE | ID: mdl-24987680

ABSTRACT

We undertook an investigation to advance understanding of the host-range dynamics and biocontrol implications of Cochliobolus lunatus in the past decade. Potato (Solanum tuberosum L) farms were routinely surveyed for brown-to-black leaf spot disease caused by C. lunatus. A biphasic gene data set was assembled and databases were mined for reported hosts of C. lunatus in the last decade. The placement of five virulent strains of C. lunatus causing foliar necrosis of potato was studied with microscopic and phylogenetic tools. Analysis of morphology showed intraspecific variations in stromatic tissues among the virulent strains causing foliar necrosis of potato. A maximum likelihood inference based on GPDH locus separated C. lunatus strains into subclusters and revealed the emergence of unclustered strains. The evolving nutritional requirement of C. lunatus in the last decade is exhibited by the invasion of vertebrates, invertebrates, dicots, and monocots. Our results contribute towards a better understanding of the host-range dynamics of C. lunatus and provide useful implications on the threat posed to the environment when C. lunatus is used as a mycoherbicide.


Subject(s)
Ascomycota/physiology , Host-Pathogen Interactions/genetics , Pest Control, Biological , Plant Diseases/genetics , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Animals , Databases, Genetic
9.
BMC Res Notes ; 7: 350, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24917207

ABSTRACT

BACKGROUND: Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. RESULTS: Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. CONCLUSION: A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development.


Subject(s)
Aspergillus/pathogenicity , Fungal Proteins/metabolism , Proteomics , Solanum tuberosum/microbiology , Aspergillus/classification , Aspergillus/metabolism , Microscopy, Electron, Scanning , Phylogeny
10.
ScientificWorldJournal ; 2014: 345794, 2014.
Article in English | MEDLINE | ID: mdl-24967429

ABSTRACT

High demand for edible bamboo shoots of Bambusa tulda and Melocanna baccifera in many Asian ethnic groups has led to the need for developing intensive bamboo farming. To achieve this, in vitro regeneration of bamboo plantlets is needed due to the long and irregular bamboo flowering cycle and scarcity of bamboo seeds. An effective protocol for plantlets regeneration in B. tulda and M. baccifera from nodal explants following validation of the species using the sequence of trnL-F intergenic spacer region is described. Effective axillary bud breaking was achieved at 3 mg/L of 6-benzylaminopurine (BAP) in MS medium. Importantly, combining 2 mg/L of kinetin (Kn) with 3 mg/L of BAP produced a synergistic effect for shoot multiplication in B. tulda and M. baccifera. Under optimized conditions in half-strength MS medium supplemented with 3 mg/L of indole-3-butyric acid (IBA), 10 mg/L of coumarin, and 3% sucrose, profuse production of dark-brown rhizome in B. tulda and abundant rooting (81.67%, P < 0.05, F = 15.46) for M. baccifera within 30 days were achieved. The established protocol and the validation of the reported species at the molecular level will be of help to stakeholders in edible bamboo trade to conserve gene-pool and increase productivity.


Subject(s)
Bambusa/growth & development , Plant Shoots/growth & development , Bambusa/classification , Bambusa/genetics , Phylogeny , Regeneration
11.
BMC Genomics ; 15: 213, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24650331

ABSTRACT

BACKGROUND: Plant and animal pathogenic fungus Cochliobolus lunatus cause great economic damages worldwide every year. C. lunatus displays an increased temperature dependent-virulence to a wide range of hosts. Nonetheless, this phenomenon is poorly understood due to lack of insights on the coordinated secretome weaponries produced by C. lunatus under heat-stress conditions on putative hosts. To understand the mechanism better, we dissected the secretome of C. lunatus interacting with potato (Solanum tuberosum L.) leaf at different temperature regimes. RESULTS: C. lunatus produced melanized colonizing hyphae in and on potato leaf, finely modulated the ambient pH as a function of temperature and secreted diverse set of proteins. Using two dimensional gel electrophoresis (2-D) and mass spectrometry (MS) technology, we observed discrete secretomes at 20°C, 28°C and 38°C. A total of 21 differentially expressed peptide spots and 10 unique peptide spots (that did not align on the gels) matched with 28 unique protein models predicted from C. lunatus m118 v.2 genome peptides. Furthermore, C. lunatus secreted peptides via classical and non-classical pathways related to virulence, proteolysis, nucleic acid metabolism, carbohydrate metabolism, heat stress, signal trafficking and some with unidentified catalytic domains. CONCLUSIONS: We have identified a set of 5 soluble candidate effectors of unknown function from C. lunatus secretome weaponries against potato crop at different temperature regimes. Our findings demonstrate that C. lunatus has a repertoire of signature secretome which mediates thermo-pathogenicity and share a leucine rich "CL[xxxx]LHM"-motif. Considering the rapidly evolving temperature dependent-virulence and host diversity of C. lunatus, this data will be useful for designing new protection strategies.


Subject(s)
Ascomycota/physiology , Solanum tuberosum/genetics , Amino Acid Motifs , Ascomycota/metabolism , Biomass , Electrophoresis, Gel, Two-Dimensional , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Mass Spectrometry , Peptides/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Solanum tuberosum/metabolism , Temperature
12.
Biomed Res Int ; 2013: 289285, 2013.
Article in English | MEDLINE | ID: mdl-24350255

ABSTRACT

Consumption of bamboo species with high level of total cyanogenic content (TCC) in Asia by many ethnic groups is significantly associated with food poisoning and occasionally Konzo (a neurological disorder). Adequate characterization of edible bamboo species with low level of TCC and high nutritious attributes is required for consumer's safety as well as for the conservation of the gene pool. Here, we employed morphological descriptors, atomic absorption spectrophotometer, RAPD, and trnL-F intergenic spacer to characterize 15 indigenous edible bamboo species of north-east India. The study indicates that morphologically and genetically evolved edible bamboo species having large and robust bamboo-shoot texture and growing at low altitude contain high level of TCC, low antioxidant properties, and low levels of beneficial macronutrients and micronutrients. Importantly, Dendrocalamus species are shown to be rich in TCC irrespective of the growing altitude while Bambusa species are found to have moderate level of TCC. The findings clearly demonstrated that Chimonobambusa callosa growing at high altitude represents safe edible bamboo species with nutritious attributes.


Subject(s)
Bambusa/metabolism , Nitriles/adverse effects , Plant Shoots/metabolism , Altitude , Antioxidants/metabolism , Food
SELECTION OF CITATIONS
SEARCH DETAIL
...